Sunday, 13 August 2017

Moving average standard deviation stata


Di bawah ini Anda dapat melihat metode C saya untuk menghitung Bollinger Bands untuk setiap titik (moving average, up band, down band). Seperti yang Anda lihat, metode ini menggunakan 2 untuk loop untuk menghitung deviasi standar bergerak dengan menggunakan rata-rata bergerak. Dulu mengandung loop tambahan untuk menghitung rata-rata bergerak selama periode n terakhir. Yang ini bisa saya hapus dengan menambahkan nilai titik baru ke totalaverage pada awal loop dan menghapus nilai titik i - n pada akhir loop. Pertanyaan saya sekarang adalah pada dasarnya: Dapatkah saya menghapus loop batin yang tersisa dengan cara yang sama seperti yang saya lakukan dengan rata-rata bergerak bertanya pada 31 Januari 13 di 21:45 Jawabannya adalah ya, Anda bisa. Pada pertengahan tahun 80an, saya mengembangkan algoritma semacam itu (mungkin tidak asli) di FORTRAN untuk aplikasi pemantauan dan kontrol proses. Sayangnya, itu lebih dari 25 tahun yang lalu dan saya tidak ingat rumus yang tepat, namun teknik ini merupakan perpanjangan dari satu untuk moving averages, dengan perhitungan orde kedua, bukan hanya linier. Setelah melihat kode Anda beberapa, saya berpikir bahwa saya dapat menjelaskan bagaimana saya melakukannya saat itu. Perhatikan bagaimana lingkaran batin Anda menghasilkan Sum of Squares: dengan cara yang sama seperti rata-rata Anda pada awalnya memiliki Nilai Nilai Satu-satunya dua perbedaan adalah urutannya (kekuatannya 2 bukan 1) dan bahwa Anda mengurangi rata-rata Setiap nilai sebelum Anda persegi itu. Nah, itu mungkin terlihat tidak terpisahkan, tapi sebenarnya bisa dipisahkan: Sekarang istilah pertama hanyalah Sum of Squares, Anda menangani hal itu dengan cara yang sama seperti Anda menghitung jumlah Nilai rata-rata. Istilah terakhir (k2n) hanya rata-rata kuadrat periode. Karena Anda membagi hasil pada periode itu pula, Anda bisa menambahkan kuadrat rata-rata baru tanpa tambahan lingkaran. Akhirnya, dalam istilah kedua (SUM (-2vi) k), karena SUM (vi) total kn maka Anda bisa mengubahnya menjadi ini: atau hanya -2k2n. Yaitu -2 kali rata-rata kuadrat, sekali periode (n) terbagi lagi. Jadi rumus gabungan terakhirnya adalah: (pastikan untuk memeriksa keabsahan ini, karena saya menurunkannya dari atas kepalaku) Dan memasukkan ke dalam kode Anda seharusnya terlihat seperti ini: Terima kasih untuk ini. Saya menggunakannya sebagai dasar implementasi di C untuk CLR. Saya menemukan bahwa, dalam praktiknya, Anda dapat memperbarui seperti newVar yang merupakan angka negatif yang sangat kecil, dan sqrt gagal. Saya memperkenalkan sebuah jika untuk membatasi nilai nol untuk kasus ini. Tidak tahu, tapi stabil. Hal ini terjadi ketika setiap nilai di jendela saya memiliki nilai yang sama (saya menggunakan ukuran jendela 20 dan nilainya adalah 0,5, jika seseorang ingin mencoba dan memperbanyaknya.) Ndash Drew Noakes 26 Jul 13 at 15:25 Ive Menggunakan commons-math (dan berkontribusi pada perpustakaan itu) untuk sesuatu yang sangat mirip dengan ini. Sumbernya yang terbuka, porting ke C harus mudah seperti kue yang dibeli di toko (sudahkah Anda mencoba membuat kue dari awal). Check it out: commons. apache. orgmathapi-3.1.1index. html. Mereka memiliki kelas StandardDeviation. Pergi ke kota menjawab 31 Jan 13 at 21:48 Anda selamat datang maaf saya tidak memiliki jawaban yang Anda cari. Saya jelas tidak bermaksud menyarankan untuk memasarkan seluruh perpustakaan Hanya kode minimum yang diperlukan, yang seharusnya beberapa ratus baris atau lebih. Perhatikan bahwa saya tidak tahu apa batasan hak cipta hukum yang dimiliki apache pada kode itu, jadi Anda harus memeriksanya. Jika Anda mengejarnya, inilah linknya. Jadi Variance FastMath ndash Jason Jan 31 13 at 22:36 Informasi yang paling penting sudah diberikan di atas --- tapi mungkin ini masih diminati. Sebuah perpustakaan Java kecil untuk menghitung moving average dan standar deviasi tersedia di sini: githubtools4jmeanvar Implementasinya didasarkan pada varian metode Welfords yang disebutkan di atas. Metode untuk menghilangkan dan mengganti nilai telah diturunkan yang dapat digunakan untuk jendela nilai bergerak. Rata-rata bergerak Rata-rata bergerak Dengan dataset konvensional, nilai rata-rata seringkali merupakan yang pertama, dan salah satu statistik ringkasan yang paling berguna untuk dihitung. Bila data dalam bentuk deret waktu, mean seri adalah ukuran yang berguna, namun tidak mencerminkan sifat dinamis data. Nilai rata-rata yang dihitung selama periode korsleting, baik sebelum periode sekarang atau berpusat pada periode berjalan, seringkali lebih bermanfaat. Karena nilai rata-rata seperti itu akan bervariasi, atau bergerak, karena periode saat ini bergerak dari waktu t 2, t 3. dll, mereka dikenal sebagai moving averages (Mas). Rata-rata pergerakan sederhana adalah (biasanya) nilai rata-rata k yang tidak tertimbang sebelumnya. Rata-rata pergerakan tertimbang secara eksponensial pada dasarnya sama dengan rata-rata pergerakan sederhana, namun dengan kontribusi rata-rata tertimbang menurut jaraknya terhadap waktu saat ini. Karena tidak ada satu, tapi keseluruhan rangkaian rata-rata bergerak untuk rangkaian tertentu, himpunan Mas dapat digambarkan sendiri pada grafik, dianalisis sebagai seri, dan digunakan dalam pemodelan dan peramalan. Berbagai model dapat dibangun menggunakan moving averages, dan ini dikenal dengan model MA. Jika model seperti itu digabungkan dengan model autoregresif (AR), model komposit yang dihasilkan dikenal sebagai model ARMA atau ARIMA (yang saya terintegrasi). Rata-rata bergerak sederhana Karena deret waktu dapat dianggap sebagai himpunan nilai,, 1,2,3,4, n rata-rata nilai-nilai ini dapat dihitung. Jika kita berasumsi bahwa n cukup besar, dan kita memilih bilangan bulat k yang jauh lebih kecil dari n. Kita dapat menghitung satu set rata-rata blok, atau rata-rata bergerak sederhana (urutan k): Setiap ukuran mewakili rata-rata nilai data selama interval observasi k. Perhatikan bahwa MA yang pertama mungkin order k gt0 adalah bahwa untuk t k. Secara umum, kita dapat menurunkan subskrip ekstra dalam ungkapan di atas dan menulis: Ini menyatakan bahwa perkiraan mean pada waktu t adalah rata-rata sederhana dari nilai yang teramati pada waktu t dan langkah waktu k -1 sebelumnya. Jika bobot diterapkan yang mengurangi kontribusi pengamatan yang jauh melampaui waktu, rata-rata bergerak dikatakan merapikan secara eksponensial. Moving averages sering digunakan sebagai bentuk peramalan, dimana nilai estimasi untuk seri pada waktu t 1, S t1. Diambil sebagai MA untuk periode sampai dan termasuk waktu t. misalnya Taksiran hari ini didasarkan pada rata-rata nilai tercatat sebelumnya sampai dengan dan termasuk kemarin (untuk data harian). Simple moving averages dapat dilihat sebagai bentuk smoothing. Pada contoh diilustrasikan di bawah ini, dataset pencemar udara yang ditunjukkan dalam pendahuluan topik ini telah ditambah dengan garis rata-rata bergerak 7-hari (MA), yang ditunjukkan di sini berwarna merah. Seperti yang bisa dilihat, garis MA menghaluskan puncak dan palung data dan bisa sangat membantu dalam mengidentifikasi tren. Rumus perhitungan maju standar berarti bahwa titik data k pertama tidak memiliki nilai MA, namun setelah itu perhitungan berlanjut ke titik data akhir dalam rangkaian. Nilai rata-rata harian PM10, sumber Greenwich: London Air Quality Network, londonair. org. uk Salah satu alasan untuk menghitung rata-rata bergerak sederhana dengan cara yang dijelaskan adalah memungkinkan nilai dihitung untuk semua slot waktu dari waktu hingga saat ini, dan Sebagai pengukuran baru diperoleh untuk waktu t 1, MA untuk waktu t 1 dapat ditambahkan ke himpunan yang sudah dihitung. Ini menyediakan prosedur sederhana untuk dataset dinamis. Namun, ada beberapa masalah dengan pendekatan ini. Adalah wajar untuk mengatakan bahwa nilai rata-rata selama 3 periode terakhir, katakanlah, harus ditempatkan pada waktu t -1, bukan waktu t. Dan untuk MA selama periode genap mungkin sebaiknya ditempatkan di titik tengah antara dua interval waktu. Solusi untuk masalah ini adalah dengan menggunakan perhitungan MA terpusat, di mana MA pada waktu t adalah rata-rata seperangkat nilai simetris di sekitar t. Terlepas dari manfaatnya yang jelas, pendekatan ini umumnya tidak digunakan karena memerlukan data tersedia untuk kejadian di masa depan, yang mungkin tidak demikian. Dalam kasus di mana analisis seluruhnya merupakan rangkaian yang ada, penggunaan Mas terpusat mungkin lebih baik. Rata-rata pergerakan sederhana dapat dianggap sebagai bentuk pemulusan, menghilangkan beberapa komponen frekuensi tinggi dari deret waktu dan menyoroti (namun tidak menghilangkan) tren dengan cara yang mirip dengan pengertian umum penyaringan digital. Memang, moving averages adalah bentuk linear filter. Hal ini dimungkinkan untuk menerapkan perhitungan rata-rata bergerak ke rangkaian yang telah dihaluskan, yaitu merapikan atau menyaring rangkaian yang sudah diperhalus. Misalnya, dengan rata-rata bergerak dari order 2, kita dapat menganggapnya sebagai dihitung dengan menggunakan bobot, jadi MA pada x 2 0,5 x 1 0,5 x 2. Begitu juga MA pada x 3 0,5 x 2 0,5 x 3. Jika kita Oleskan tingkat kedua dari smoothing atau filtering, kita memiliki 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 yaitu penyaringan 2 tahap Proses (atau konvolusi) telah menghasilkan rata-rata pergerakan simetris tertimbang bervariasi, dengan bobot. Beberapa konvolusi dapat menghasilkan rata-rata pergerakan tertimbang yang cukup rumit, beberapa di antaranya telah ditemukan penggunaan khusus di bidang khusus, seperti dalam perhitungan asuransi jiwa. Moving averages dapat digunakan untuk menghilangkan efek periodik jika dihitung dengan panjang periodisitas seperti yang diketahui. Misalnya, dengan variasi musiman data bulanan seringkali dapat dihapus (jika ini adalah tujuannya) dengan menerapkan rata-rata pergerakan 12 jam simetris dengan semua bulan berbobot rata, kecuali yang pertama dan terakhir yang dibobot pada 12. Hal ini karena akan ada Menjadi 13 bulan dalam model simetris (waktu sekarang, t - 6 bulan). Total dibagi dengan 12. Prosedur serupa dapat diadopsi untuk periodisitas yang didefinisikan dengan baik. Rata-rata pergerakan tertimbang secara eksponensial (EWMA) Dengan rumus rata-rata bergerak sederhana: semua pengamatan sama-sama tertimbang. Jika kita menyebut bobot yang sama ini, alpha t. Masing k bobot sama dengan 1 k. Jadi jumlah bobotnya adalah 1, dan rumusnya adalah: Kita telah melihat bahwa beberapa aplikasi dari proses ini menghasilkan bobot yang bervariasi. Dengan rata-rata pergerakan tertimbang secara eksponensial, kontribusi terhadap nilai rata-rata dari pengamatan yang lebih banyak dihapus pada waktunya akan dikurangi, sehingga menekankan kejadian terkini (lokal). Pada dasarnya parameter penghalusan, 0lt alpha lt1, diperkenalkan, dan rumusan direvisi menjadi: Versi simetris dari rumus ini adalah bentuknya: Jika bobot pada model simetris dipilih sebagai persyaratan istilah ekspansi binomial, (1212) 2q. Mereka akan berjumlah 1, dan q menjadi besar, akan mendekati distribusi Normal. Ini adalah bentuk pembobotan kernel, dengan Binomial berperan sebagai fungsi kernel. Konvolusi dua tahap yang dijelaskan pada subbagian sebelumnya adalah pengaturan ini, dengan q 1, menghasilkan bobot. Dalam eksponensial smoothing perlu menggunakan seperangkat bobot yang berjumlah 1 dan yang mengurangi ukuran secara geometris. Bobot yang digunakan biasanya berbentuk: Untuk menunjukkan bahwa bobot ini berjumlah 1, pertimbangkan perluasan 1 sebagai rangkaian. Kita dapat menulis dan memperluas ekspresi dalam tanda kurung dengan menggunakan rumus binomial (1- x) hal. Dimana x (1-) dan p -1, yang memberikan: Ini kemudian memberikan bentuk rata-rata bergerak tertimbang dalam bentuk: Penjumlahan ini dapat ditulis sebagai relasi rekurensi: yang menyederhanakan perhitungan dengan sangat, dan menghindari masalah bahwa rezim pembobotan Harus benar-benar tak terbatas untuk bobot untuk jumlah ke 1 (untuk nilai-nilai kecil alfa. ini biasanya tidak terjadi). Notasi yang digunakan oleh penulis berbeda bervariasi. Beberapa menggunakan huruf S untuk menunjukkan bahwa rumus dasarnya adalah variabel yang merapikan, dan menulis: sedangkan literatur teori kontrol sering menggunakan Z daripada S untuk nilai tertimbang atau tertimbang secara eksponensial (lihat, misalnya, Lucas dan Saccucci, 1990, LUC1 , Dan situs NIST untuk lebih jelasnya dan contoh kerja). Rumus yang dikutip di atas berasal dari karya Roberts (1959, ROB1), namun Hunter (1986, HUN1) menggunakan ekspresi dari bentuk: yang mungkin lebih sesuai untuk digunakan dalam beberapa prosedur pengendalian. Dengan alpha 1, perkiraan rata-rata hanyalah nilai terukurnya (atau nilai dari item data sebelumnya). Dengan 0,5 perkiraan adalah rata-rata bergerak sederhana dari pengukuran arus dan sebelumnya. Dalam peramalan model nilai, S t. Sering digunakan sebagai perkiraan atau perkiraan nilai untuk periode waktu berikutnya, yaitu sebagai perkiraan untuk x pada waktu t 1. Jadi, kita memiliki: Ini menunjukkan bahwa nilai perkiraan pada waktu t 1 adalah kombinasi dari rata-rata bergerak tertimbang eksponensial sebelumnya Ditambah komponen yang merepresentasikan kesalahan prediksi tertimbang, epsilon. Pada waktu t. Dengan asumsi deret waktu diberikan dan perkiraan diperlukan, nilai untuk alpha diperlukan. Hal ini dapat diperkirakan dari data yang ada dengan mengevaluasi jumlah kesalahan prediksi kuadrat yang diperoleh dengan nilai alpha yang bervariasi untuk masing-masing t 2,3. Menetapkan perkiraan pertama menjadi nilai data pertama yang diamati, x 1. Pada aplikasi kontrol, nilai alpha penting dalam penentuan batas atas dan bawah, dan mempengaruhi rata-rata panjang run (ARL) yang diharapkan. Sebelum batas kontrol ini rusak (dengan asumsi bahwa deret waktu mewakili satu set variabel independen acak yang terdistribusi secara acak dengan varians umum). Dalam keadaan ini varians dari statistik kontrol: adalah (Lucas dan Saccucci, 1990): Batas kontrol biasanya ditetapkan sebagai kelipatan tetap dari varians asimtotik ini, mis. - 3 kali standar deviasi. Jika alpha 0,25, misalnya, dan data yang dipantau diasumsikan memiliki distribusi Normal, N (0,1), bila terkendali, batas kontrol akan menjadi - 1.134 dan prosesnya akan mencapai satu atau batas lainnya dalam 500 langkah. rata-rata. Lucas dan Saccucci (1990 LUC1) menurunkan ARL untuk berbagai nilai alfa dan dengan berbagai asumsi menggunakan prosedur Markov Chain. Mereka menabulasikan hasilnya, termasuk menyediakan ARL bila rata-rata proses kontrol telah digeser oleh kelipatan dari standar deviasi. Misalnya, dengan pergeseran 0,5 dengan alpha 0,25 ARL kurang dari 50 langkah waktu. Pendekatan yang dijelaskan di atas dikenal sebagai smoothing eksponensial tunggal. Karena prosedur diterapkan sekali pada deret waktu dan kemudian dianalisis atau dikendalikan dilakukan pada dataset yang dihaluskan. Jika dataset mencakup tren dan atau komponen musiman, smoothing eksponensial dua atau tiga tahap dapat diterapkan sebagai alat untuk menghapus (secara eksplisit memodelkan) efek ini (lihat lebih lanjut, bagian tentang Peramalan di bawah, dan contoh kerja NIST). CHA1 Chatfield C (1975) Analisis Seri Times: Teori dan Praktik. Chapman and Hall, London HUN1 Hunter J S (1986) Rata-rata pergerakan tertimbang secara eksponensial. J dari Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Skema Kontrol Rata-rata Bergerak Rata-rata Tertimbang: Properti dan Perangkat Tambahan. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Uji Chart Kontrol Berdasarkan Rata-rata Bergerak Geometrik. Technometrics, 1, 239-250Announcement 04 Nov 2014, 19:36 Dear all, Saya bekerja dengan dataset panel yang tidak seimbang dimana panel var adalah nomor dana dan var waktu adalah bulannya. Jadi, saya bekerja dengan seri waktu bulanan tapi dengan gap. Yang saya inginkan adalah menghitung rasio Sharpe 3 tahun dan juga 3 tahun jensens alpha untuk setiap dana. Jadi, jika saya pada tahun 1992 saya ingin menghitung rasio Sharpe untuk tahun itu dengan menggunakan observasi bulan pada tahun 1992 1991 1990. Untuk melakukannya saya memerlukan mean dan sd kelebihan imbal hasil setiap dana selama periode tersebut. Selain itu, saya ingin memperkirakan Jensens Alpha dengan menjalankan model CAPM menggunakan lagi pengamatan bulanan dari tahun 1992 1991 1990. Untuk melakukannya, saya dapat menggunakan perintah statsby dan menggunakan koefisien regresi yang berjalan selama periode tersebut. Saya telah mencoba banyak perintah seperti rollreg, movavg, ma dll dan juga beberapa penduduk lokal dengan foreachforvalues ​​tapi saya tidak dapat menggunakannya karena saya tidak memiliki panel seimbang dan saya tidak ingin menghilangkan dana karena saya mungkin memiliki satu atau dua celah. Ini adalah contoh dataset saya bulan ryear mktrf smb hml umd ExcessR s ---------------------------------- ----------------------------------------- 2 1997 1. 2 1997 2 -. 0049 -.0261 .0469 -.0204. 2 1997 3 -.0503 -.0032 .0386 .0094 -.0181431 2 1997 4 .0404 -.0519 -.0102 .0489 .0117428 2 1997 5 .0674 .0483 -.0438 -.0519 .0372053 ---- -------------------------------------------------- --------------------- 2 1997 6 .041 .015 .0072 .0259 .0310222 2 1997 7 .0733 -.0252 -.0013 .0384 .0402394 2 1997 8 -.0415 .0734 .0137 -.0252 -.0292168 2 1997 9 .0535 .0268 -.0025 .0145 .0381404 2 1998 1 .0015 -.0094 -.0207 .001 .0056473 ------ -------------------------------------------------- ------------------- 2 1998 2 .0703 .0032 -.0086 -.011 .0395531 2 1998 3 .0476 -.0099 .0123 .0214 .0277491 2 1998 4.0073 .0048 .0027 .0078 .0005439 2 1998 5 -.0307 -.0354 .0412 .0189 -.0093562 2 1998 6 .0318 -.0315 -.0222 .0726, 002362 -------- -------------------------------------------------- ----------------- 2 1998 7 -.0246 -.0492 -.0115 .0371 -.0232616 2 1998 8 -.1608 -.0575 .0524 .0187 -.091043 2 1998 9 .0615 -.0015 -.0388 -.0063 .0222817 2 1998 10 .0713 -.032 -.0277 -.0535 .0311223 2 1998 11. 061 .0114 -.0343 .0118 .0300834 ---------------------------------------- ----------------------------------- 2 1998 12 .0616 -.003 -.047 .0904 .0168859 7 1994 1 .0287 .0014 .021 .0001 .0183894 7 1994 2 -.0256 .0272 -.0141 -.0026 -.0170168 7 1994 3 -.0478 -.0096 .0134 -.0132 -.0656004 7 1994 4 .0068 -.0091 .0169 .0041 -.0032034 -------------------------------------- ------------------------------------- 7 1994 5 .0058 -.0201 .0018 -.0216 -.0093189 7 1994 6 -.0303 -.0048 .0168 -.0083 -.0506594 7 1994 7 .0282 -.0178 .0098 .0019 .0199595 7 1994 8 .0401 .0145 -.0347 .0154 .0419298 7 1994 9 -.0231 .0268 -.0181 .0131 -.0135341 ------------------------------------ --------------------------------------- 7 1994 10 .0134 -.022 -.0236 .0145 .0129598 7 ​​1994 11 -.0404 -.0017 -.0005 -.0019 -.0433825 7 1994 12 .0086 .0005 .0026 .035 .0152948 05 Nov 2014, 11:35 Terima kasih banyak atas posting Anda. Mengenai rasio sharpe inilah kode yang saya tulis dan selesaikan masalah saya. Gen MeanVWExcRetGr. Sort crspfundno ryear bulan forval i1990 (1) 2013 mi-2 lokal oleh crspfundno. Egen Meanimean (VWExcRetGr) jika ryearlti amp ryeargtm mengganti MeanVWExcRetGrMeani jika ryeari itu tidak sempurna, tapi saya memiliki sarana saya dalam satu kolom sekarang sehingga setiap tahun saya memiliki nilai rolling mean yang sama dalam pengamatan bulanan saya (egen). Saya mengatakan itu tidak sempurna karena dalam perintah saya tidak menentukan bahwa saya ingin rata-rata nilai hanya dalam kasus bahwa saya memiliki 3 tahun pengamatan. Jadi, juga menghitung mean dalam kasus di mana saya memiliki pengamatan selama 2 tahun. Kabar baiknya adalah saya bisa menghilangkan sendiri pengamatan tersebut. Saya posting di atas karena saya ingin Anda mengerti apa yang saya butuhkan dengan tepat. Saya ingin memiliki alpha dan beta, masing-masing dalam satu kolom sehingga saya dapat menggunakannya untuk regresi mereka pada variabel lain. Oleh karena itu, pada tahun 1995 untuk dana no 100 yang memiliki 11 pengamatan bulanan misalnya, saya ingin alpha-output dari regresi capm4 3 tahun bergantian (1995,1994,1993) capm4 untuk diulang dalam 11 baris - cells dari kolom alfa. Hal yang sama berlaku untuk versi beta. Saya menerapkan kode Mata dengan beberapa perubahan egen g group (crspfundno) gen alpha. Gambar stread (hml. Quothmlquot) stview (umd. Quotumdquot) stview (gbr. Quightmlquot) stview (hml. Quothmbquot) stview (umd. Quotumdquot) stview (gbr. Quightmlquot) stview (umd. Quotumdquot) stview (gw. Quotcrearfotno) stview (mrtrf. Quotmktrfquot) stview (hml. Quothmbquot) stview (umd. Quotumdquot) stview Quotgquot) sttar (alfa quotalphaquot) p paneletup (crspfundno, 1) untuk (i1 iltrows (p) i) untuk (opi, 2 ogtpi, 1 o--) y J (1,1,) XJ (1,5 ,.) B. Untuk (untuk tgtpi, 1 t--) jika (pergi, 1 gt, 1 amp ryearo, 1 - ryeart, 1 lt 2) yy VWExcRetGrt, 1 XX (mktrft, 1, smbt, 1, hmlt, 1, umdt, 1 , 1) yy (2..rows (y)) ,. XX (2..rows (X)) ,. Jika (baris (y) gt6) b invsym (cross (X, X)) cross (X, y) alphao, 1 b5,1 end tapi hasilnya adalah yang satu ini dan tidak termasuk beta juga. Tolong bantu saya mendanai tahun r alamat 5487 2001 1 478 -.0045781 5487 2001 2 478 -.0049922 5487 2001 3 478 -.0044039 5487 2001 4 478 -.0058963 5487 2001 5 478 -.0057021 5487 2001 6 478 - .0037893 5487 2001 7 478 -.0046226 5487 2001 8 478 -.0027665 5487 2001 9 478 -.0037288 5487 2002 1 478 .0009866 5487 2002 2 478 .0019246 5487 2002 3 478 .0019994 5487 2002 4 478 .002021 5487 2002 5 478 .0025631 5487 2002 6 478 .0019815 5487 2002 7 478 .0037848 5487 2002 8 478 .0035144 5487 2002 9 478 .003802 5487 2002 10 478 .0012915 5487 2002 11 478 .0016832 5487 2002 12 478 .0015888 Saya tidak yakin apakah Saya memahamimu. Namun, mengulangi saran di thread yang saya maksudkan tadi tentang tidak menggunakan kode Mata sementara kode Stata tersedia, berikut adalah kode yang disesuaikan dari thread yang akan melakukan regresi bergulir. Ini akan membawa Anda banyak waktu jika Anda memiliki kumpulan data yang besar. Beritahu saya jika Anda membutuhkan banyak waktu. Saya menyarankan Anda untuk memeriksa hasilnya. 06 Nov 2014, 08:51 Kepada Abraham: Benar-benar kode mata cepat. Saya hanya butuh 1 menit, bukan 2 jam. Selain itu, ia bekerja lebih baik karena memberikan nilai yang hilang jika saya hanya memiliki pengamatan satu tahun. Terima kasih banyak. Satu pertanyaan terakhir Jika saya memerlukan regresi capm, itu berarti hanya VWExcRetGr dan mktrf, tapi bukan smb hml umd, apakah ini bagaimana kodenya seharusnya seperti gen Alpha. Gen bMktrf. Sttar (stiker) stamp (stiker) stamp (stiker) (panel depan) (panel depan) untuk panel (lihat gambar 1) untuk (i1 iltrows) sttar (strater. Quotcrearfotno) (P) i) untuk (opi, 1 oltpi, 2 o) y VWExcRetGro, 1 X (mktrfo, 1. 1) b. Untuk (tpi, 1 tltpi, 2 t) jika (untuk amp crspfundnoo, 1 crspfundnot, 1 amp (ryearo, 1 - ryeart, 1 lt 2) amp ryearo, 1 gt ryeart, 1) yy VWExcRetGrt, 1 XX (mktrft, 1 1) jika (baris (y) gt6) b invsym (cross (X, X)) cross (X, y) Alphao, 1 b2,1 bMktrfo, 1 b1,1 Dalam kode Anda, Anda menghitung standar deviasi menurut negara dan Industri (menggunakan rangkuman) tapi kemudian Anda mengganti nilai ini ke SDX coutries lainnya (di lingkaran dalam). Apakah itu yang ingin Anda lakukan Saya menulis kode Mata dengan asumsi Anda ingin menghitung standar deviasi per negara dan industri. Jika Anda ingin menghitung per negara dan industri yang perlu Anda tambahkan: Berikut adalah kode Mata (ini menghitung standar deviasi juga bila jendela kurang dari 4 tahun):

No comments:

Post a Comment